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Abstract. We investigate the physical meaning of the longitudinal muon spin-relaxation rate
λZ measured for a paramagnet at temperatures high with respect to the magnetic phase transition
temperature. The depolarization rateλZ is shown to be a function of the relaxation rates of
the quasi-elastic and inelastic magnetic excitations. Using this analysis, we consider recently
publishedµSR data recorded on the strongly correlated electron systems CeNiSn and CePt2Sn2.

1. Introduction

Positive muon spectroscopy (µSR) has been intensively used to probe the static magnetic
properties of magnets at the microscopic level, in particular in the strongly correlated
compounds [1]. The dynamical magnetic properties of these compounds in the paramagnetic
phase have not been much studied, notwithstanding the fact that magnetic ordering, if any,
generally occurs at very low temperature. The absence of a detailed theoretical framework
for the analysis ofµSR data recorded far into the paramagnetic state, especially when a
sizeable crystal-electric-field (CEF) interaction is present, may however explain this lack of
interest. The purpose of this paper is to provide such a framework and to give examples of
its use by analysing recently publishedµSR data in the strongly correlated electron systems
CeNiSn and CePt2Sn2. In a separate work we use this framework to analyseµSR data in
the Yb-based weak Kondo lattice YbAuCu4 [2].

The organization of this paper is as follows. In section 2 we derive the relation between
the longitudinalµSR relaxation rateλZ and the spin–spin correlation functions of the
paramagnet. We neglect the inter-site correlations and assume that the motional narrowing
approximation is valid. In section 3,λZ is expressed in terms of the spectral functions
of magnetic excitations. Our approach should be particularly useful for the description
of compounds with f-electronic-shell ions. In section 4 we analyse publishedµSR data
recorded for CeNiSn and CePt2Sn2. In section 5 we summarize our work. Some useful
matrix elements are listed in an appendix.

2. The longitudinal µSR relaxation rate and spin–spin correlation functions

In the µSR technique [3, 4] polarized muons are implanted into a sample where their
spin evolves in the local magnetic field until they decay. The decay positron is emitted
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preferentially along the final muon spin direction; by collecting several million positrons,
we can reconstruct the time dependence of the muon spin-depolarization functionPZ(t)

which, in turn, reflects the evolution of the field at the muon site. TheZ-axis refers to the
muon beam polarization axis which, in our case, is the direction of the detected positrons.
This longitudinal geometry is best suited for the study of spin dynamics.

We suppose that theµSR spectra are not influenced by the nuclear magnetic moments
of the compound under study. This means that they are eventually recorded in a weak
magnetic field applied along theZ-axis. This field, which is typically about 10 mT, is
sufficiently low that it does not influence the spin dynamics and the relationship between
λZ and the spin–spin correlation functions. Basically to give a numerical value, experiments
performed in a 10 mT longitudinal field probe the dynamical susceptibility at an energy of
5.6 neV which we take as 0.

We assume that the motional narrowing approximation is valid. This means that we
only consider compounds characterized by relatively fast dynamics. This is usually the case.
An example of the breakdown of the motional narrowing approximation at low temperature
is given in [5].

Within this hypothesisPZ(t) is an exponential function characterized by a relaxation
rateλZ which can be expressed in terms of the field correlation functions at the muon site
[6]. Previously these functions were written in the laboratory reference frame (X, Y , Z)
whereX, Y , and Z are unit vectors. But the magnetic properties of the compound are
more easily described in an orthogonal reference frame (x, y, z) attached to the crystal
axes rather than to the laboratory. Its unit vectors are chosen parallel to the crystal axes
according to the symmetry of the compound.

As can be seen from the definition of theµSR depolarization function, theZ-axis is of
special importance. We defineZ in the (x, y, z) frame by its polar anglesθ andϕ. With
these angles the expression for theµSR relaxation rate in terms of the correlation tensor in
the crystal axes is

λZ = πγ 2
µ

∑
β,α

Lβα(θ, ϕ)8̃αβ (1)

whereL(θ, ϕ) is a matrix, the elements of which are given in appendix A, and8̃ is a field
correlation function at zero energy transfer written in the(x, y, z) reference frame, with
{α, β} = {x, y, z}.

The tensor8̃αβ can be expressed as a sum over crystal sites of a product of the
symmetrized correlation tensor̃3 of the total angular momenta of the magnetic ions, and
of tensorsG̃ describing the coupling between the muon spin and the total angular momenta
[6, 7]:

8̃αβ =
(

µ0

4π

)2(
gJ µB

)2 1

v2

∑
γ,γ ′

∑
i,d

∑
i ′,d ′

Gαγ
ri+d

Gγ ′β
ri′+d′ 3̃

γ γ ′
ii ′,dd ′ (2a)

with

Gαγ
ri+d

= v

(
3ri+d,αri+d,γ

r5
i+d

− δαγ

r3
i+d

)
+ Hri+d

δαγ . (2b)

In these expressions,µ0 is the permeability of free space,gJ the spectroscopic Landé factor
of the rare earth, andv the volume of the lattice cell used to describe the crystal. The
tensorGri+d

describes the coupling between the muon spin and the total angular momentum
Ji,d of the ion located at the distanceri+d from the muon site,ri+d being a vector which
points to sitei of sublatticed. In the case of the Bravais lattice the sums overd and d ′
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reduce to a single term. The quantityHri+d
is the hyperfine tensor which for simplicity we

suppose isotropic. The tensor3̃ii ′,dd ′ is the Fourier transform at zero energy transfer of the
spin–spin correlation tensor between total angular momentaJi,d andJi ′,d ′ .

At this stage, we make the important approximation that the correlations between
magnetic moments at different sites are negligible, i.e. we neglect anyq-dependence of the
spin–spin correlation tensors. This approximation is valid at sufficiently high temperature
relative to the magnetic phase transition temperature. Therefore we set3̃

γ γ ′
ii ′,dd ′ = 3̃γ γ ′

δii ′δdd ′ .
Then we derive

8̃αβ =
(

µ0

4π

)2

(gJ µB)2
∑
γ,γ ′

3̃γ γ ′ 1

v2

∑
i,d

Gαγ
ri+d

Gγ ′β
ri+d

. (3)

It is always possible to find a frame in which̃3γγ ′
is diagonal. In this frame, it is

characterized by only one correlation function for the cubic case and two distinct correlation
functions in the axial case. In the axial case one can write

3̃γ γ ′ = 3̃‖δγ zδγ ′z + 3̃⊥(δγ γ ′ − δγ zδγ ′z). (4)

Combining the previous two equations we derive

8̃αβ = (
µ0

4π
)2(gJ µB)2

[
(3̃‖ − 3̃⊥)

1

v2

∑
i,d

Gαz
ri+d

Gzβ
ri+d

+3̃⊥
1

v2

∑
γ

∑
i,d

Gαγ
ri+d

Gγβ
ri+d

]
(5)

where3̃‖ and 3̃⊥ are respectively the parallel and perpendicular correlation functions. In
the cubic case,̃3γγ ′

is a scalar tensor, i.e.̃3‖ = 3̃⊥ ≡ 3̃, andλZ is proportional to3̃.
The expression forλZ can be rather simple if the symmetry at the muon site is high.

For example ifGαz
ri+d

= 0 for α = x or y, we find then that whileλZ(θ = 0) is proportional

to 3̃⊥, λZ(θ = π/2) is a weighted sum of̃3‖ and3̃⊥. In any case, if the point symmetry
at the muon site is known, it is possible to determine the correlation functions by combining
measurements performed on a single crystal for different orientations ofZ relative to the
crystal axes.

3. The longitudinal µSR relaxation rate, susceptibilities and spectral functions

In this section we obtain a physically transparent meaning ofλZ using the results of section 2,
and a phenomenological description for the magnetic excitations. In the first subsection we
shall derive some formulae and give a model example in the second subsection.

3.1. Formalism

For simplicity we shall study here the case for which3̃γ γ ′
is scalar. This describes

compounds with magnetic ions located in sites of cubic symmetry. The result derived below
has been used to analyseµSR data recorded for the Kondo lattice compound YbAuCu4 [2].
As mentioned in the previous section, in cubic symmetry,8̃αβ is proportional to the on-site
symmetrized spin correlation functioñ3:

3̃ = 1

2π

∫ ∞

−∞
dτ

1

2
[〈Jz(τ )Jz + JzJz(τ )〉] (6)

which is related to the dynamic susceptibility by the fluctuation-dissipation theorem:

3̃ = 1

µ0(gJ µB)2
kBT lim

ω→0

χ ′′[ω]

πω
. (7)
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In this expression,χ ′′[ω] is the one-sided time Fourier transform of the imaginary part of the
dynamical susceptibility [8]. For rare-earth paramagnets, it is important to take into account
the splitting of the ground spin–orbit multiplet of the 4f shell by the CEF interaction, which
is of the order of 100 K in intermetallic compounds. In these latter compounds, where the
dynamics of the rare-earth ion is dominated by the coupling between the total momentumJ
and the conduction electron spin density, general methods have been developed to compute
χ ′′[ω] in the presence of CEF splittings [9, 10, 11]. The dynamical susceptibility has also
been computed in the case of a Kondo coupling, both for a degenerate 4f ion using the
non-crossing-approximation (NCA) scheme [12] and for an ion in the presence of CEF
splittings [13].

In order to understand qualitatively the meaning of theµSR longitudinal relaxation
rate in the presence of CEF splittings, it is useful to introduce the approximate model
that Holland-Moritzet al [14] derived for the computation of inelastic neutron scattering
spectra. This will provide us with the possibility of analysing the relationship between the
dynamical linewidths andλZ. The model considers the CEF excitations as independent and
accordingly splits the susceptibility into Curie and Van Vleck terms. The coupling between
the elastic and inelastic excitations is considered in more elaborate treatments [9, 10, 11].
The dynamical susceptibility is written as

χ ′′[ω]

πω
=

∑
m

χm
C Pmm(ω) + 1

2

∑
m6=n

χnm
V V

[
1 − exp(−β1nm)

]
Pnm

(
ω − 1nm

h̄

)
(8)

where the sums are over the CEF energy levels. Here

χm
C = µ0(gJ µB)2

kBT
ρm|〈m|Jz|m〉|2 (9)

is the Curie susceptibility of themth level and

χnm
V V = µ0(gJ µB)2ρm

|〈n|Jz|m〉|2
1nm

(10)

is the Van Vleck susceptibility for the transition from the state with energyEm to the state
with energyEn. We have1nm = En − Em and ρm = exp(−βEm)/Z whereβ = 1/kBT

andZ is the partition function. The normalized functionPnm(ω) is the spectral function for
the mn-excitation (from state|m〉 to state|n〉). We shall assume it has a Lorentzian shape,
which allows us to compare the muon and neutron scattering data. Then we set

Pnm(ω) = 1

π

0nm

02
nm + ω2

(11)

where0nm(T ) is the dynamical half-width at half-maximum for transitionmn. Equation
(8) has been used intensively for analysing inelastic neutron scattering data recorded for
paramagnets. The first and second terms on its right-hand side describe the elastic and
inelastic CEF transitions, respectively. The inelastic term contains both the energy-loss and
energy-gain contributions.

Introducing the Curie susceptibility for the free ion:

χC = µ0(gJ µB)2J (J + 1)

3kBT
≡ µ0µ

2
eff

3kBT
(12)

and defining a new form for the coupling tensor between the 4f ion and the muon spin:

Mαβ = γ 2
µ

(
µ0

4π

)2
µ2

eff

3

1

v2

∑
γ

∑
i,d

Gαγ
ri+d

Gγβ
ri+d

(13)



The muon spin-relaxation rate in 4f paramagnets 5117

we can write the damping rateλZ as

λZ =
[∑

β,α

Lβα(θ, ϕ)Mαβ

]
1

0µSR
. (14)

We have introduced here a new dynamical width0µSR appropriate for the interpretation of
µSR data:

1

0µSR
= π

χC

{∑
m

χm
C Pmm(ω = 0) + 1

2

∑
m6=n

χnm
V V

[
1 − exp(−β1nm)

]
Pnm

(
1nm

h̄

)}
. (15)

Explicitly, we havePmm(0) = 1/(π0m) and

Pnm

(
1nm

h̄

)
= 1

π0nm

1

1 + (1nm/h̄0nm)2
. (16)

It is clear that0µSR depends on both the elastic and inelastic dynamical linewidths, which
have to be computed in each case according to the dominant relaxation mechanism of the
4f ions. We note that if thez- andZ-axes are taken to be parallel, in cubic symmetry we
haveMxx = Myy ≡ 12

e . It follows that equation (14) can be simply written as

λZ(T ) = 212
eτ (T ) (17)

where we have definedτ = 1/0µSR. We recover the well known motional narrowing
limit formula. However, our analysis clearly shows that, in the presence of sizeable CEF
splittings,τ is a complex quantity which contains a contribution from both quasielastic and
inelastic excitations.

A more general expression for the damping rateλZ can be written in terms of the
dynamical susceptibility:

λZ =
[∑

β,α

Lβα(θ, ϕ)Mαβ

]
1

χC

lim
ω→0

χ ′′[ω]

ω
. (18)

If the CEF effects are negligible, all of the multiplet energy levels are degenerate and
χ ′′[ω]/ω can be taken as a quasielastic Lorentzian function with half-width at half-maximum
0Q. Then0µSR = 0Q.

In the general case, i.e. for a symmetry lower than cubic,λZ can be expressed as a
linear combination of the spin–spin correlation functions of the paramagnet, as shown in
section 2. Each of these functions can be computed according to the model developed
above. This means thatλZ can be written as a linear combination of terms such as that
given by equation (15). Each of these terms refers to a specific correlation function, and
the coefficients depend only on the muon site properties.

Equations (15) and (18) are written in terms of the Curie susceptibility. This does not
presuppose that the compound susceptibility follows the Curie law. Our writing them in
this way is just a practical method of obtaining compact equations.

3.2. Discussion

Formula (17) is similar to a well known nuclear magnetic resonance (NMR) formula which
is often used to extract 1/τ from 1/T1 data when the nuclear dynamics is dominated by the
hyperfine coupling with the electronic spin. In common NMR practice, the possible effect
of the inelastic excitations is usually neglected and 1/τ is compared to the quasi-elastic
linewidth measured by inelastic neutron scattering or is computed theoretically [15].
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For rare-earth ions in the presence of CEF splittings, formula (17) has two drawbacks:
the symmetry properties ofλZ are not apparent and the physical meaning ofτ is not explicit.

Concerning the first point, we have written the equations of section 2 in such a way that
their symmetry properties are transparent. This is particularly important forµSR because
the muon does not sit at the magnetic ion site. Therefore, as pointed out at the end of
section 2, two types of spatial symmetry have to be considered: the symmetry of the spin–
spin correlation functions, depending on the magnetic ion point symmetry group, and the
symmetry at the muon site, which can be different from that of the magnetic ion site.

Figure 1. Thermal dependences of the ratio0µSR/0Q for the case of fluctuations driven by the
4f-conduction-electron exchange, for three values of the square of the 4f-conduction-electron
coupling|Jkf n(EF )|2 (0.02, 0.05 and 0.1), in the presence of crystal-field splittings of the Yb3+
ion analogous to those in YbAuCu4. 0µSR is probed inµSR experiments in zero or a weak
longitudinal field, and0Q is the quasi-elastic linewidth measured by neutron scattering.

As to the physical meaning ofτ , we shall illustrate it through a model calculation of
0µSR and of the neutron quasi-elastic linewidth0Q. We consider a Yb3+ ion sitting at a
site with cubic symmetry in a metallic compound, and assume that its CEF level scheme is
similar to that in YbAuCu4 [16]: the 07 doublet is the ground state, the08 quartet the first
excited state at 3.9 meV (45 K) and the06 doublet lies at 6.9 meV (80 K) from the ground
state. These CEF excitations are therefore of rather low energy, and when temperature
grows, say, from 4.2 K to 300 K, one crosses from the regimekBT � Em to the regime
kBT � Em. We assume that the relaxation of the 4f momentJ is solely due to its coupling
with the conduction electron spin density through the classicalkf exchange interaction [17].
Then, the dynamical linewidth for a transition from state|m〉 to state|n〉 is given by [18]

0mn(T ) = 2π

h̄
(gJ − 1)2α2Mmn

1mn

exp(β1mn) − 1
(19)

whereα = Jkf n(EF ) is the 4f-conduction-electron coupling constant,Jkf the kf exchange
integral, n(EF ) the electronic density of states at the Fermi level per spin direction and
Mmn a matrix element for the transition from|m〉 to |n〉:

Mmn = 2|〈m|Jz|n〉|2 + |〈m|J+|n〉|2 + |〈m|J−|n〉|2. (20)
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When m = n, i.e. for a quasi-elastic line, the law (19) reduces to the classical Korringa
law:

0m = 2π

h̄
(gJ − 1)2α2Mmm̄kBT (21)

where the state|m̄〉 is the Kramers conjugate of|m〉. The quasi-elastic line as measured
by inelastic neutron scattering corresponds to the first term of (8). Because it is a sum of
various Lorentzian contributions with different widths, its shape is not exactly Lorentzian.
One can however estimate0Q with good precision by fitting the line with a Lorentzian. We
have computed the thermal variation of the ratior(T ) = 0µSR/0Q for three values ofα2.
The result is shown in figure 1. At low temperature, the ratio tends towards

r(T = 0) = J (J + 1)

3|〈g|Jz|g〉|2 (22)

where |g〉 is the CEF doublet ground state (07 in our example). The thermal variation of
r(T ) is non-monotonic, but0µSR remains always larger than0Q. At high temperature,
the ratior(T ) decreases as temperature increases, more rapidly with increasingα2-values,
i.e. with increasing dynamical widths. Our calculation shows that the asymptotic limit of
r(T ) is close to 2, corresponding to the fact that at very high temperature, the quasi-elastic
and inelastic lines merge together, the resulting line being roughly twice as broad as the
quasi-elastic line.

Figure 2. Thermal dependences of the dynamical linewidths0µSR (full line) as probed by
µSR and0Q, the quasi-elastic neutron scattering linewidth (dashed line), in the presence of
crystal-field splittings of the Yb3+ ion, for |Jkf n(EF )|2 = 0.1.

The thermal variation of0µSR and of 0Q is shown in figure 2 forα2 = 0.1. Above
50 K, the quasi-elastic width shows a linear Korringa behaviour as expected; the initial
slope is different, corresponding to the quasi-elastic width of the ground state alone. As to
0µSR(T ), it shows a pronounced downward curvature below 150 K, and recovers a linear
Korringa-type variation only at high temperature. This is due to the contribution of the
inelastic linewidths which have a non-linear behaviour forkBT ∼ 1mn (expression (19)).
It is to be emphasized that this model calculation does not apply in the actual case of
YbAuCu4 because of the presence of the Kondo coupling. The thermal variation of0Q in
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YbAuCu4 shows a downward curvature [16], and that of0µSR is detailed in [2]. A tentative
interpretation of these data within a Kondo model is given in [2].

4. Analysis of some published longitudinal relaxation rate data

In this section we present a preliminary analysis of publishedµSR relaxation rate data
recorded for the strongly correlated electron systems CeNiSn and CePt2Sn2, where the
Kondo coupling is expected to play a major role, using the theoretical framework that we
have established. We first summarize the theoretical predictions concerning the relaxation
rate of a 4f angular momentum in the presence of Kondo coupling.

4.1. The relaxation rate of a Kondo ion

The computation of the quasi-elastic relaxation rate0Q for a Kondo ion with degeneracyNf ,
both below and above the Kondo temperatureT0, has been achieved through the computation
of the f excitation spectrumP NCA(ω, T ) using the 1/Nf expansion technique in the NCA
scheme [12]. Although the excitation spectrum in the presence of hybridization is found to
have a non-Lorentzian shape, especially forT < T0, h̄0Q(T ) is identified with the energy
for which the function ¯hωP NCA(ω, T ) goes through a maximum. For a Lorentzian-shaped
P(ω, T ), this coincides with the half-width. The quasi-elastic width0Q is found to be of
the order ofkBT0/h̄ for T � T0, then it goes through a minimum forT ' T0, and increases
with further increase of the temperature according to the semi-empirical law, holding for
T & 5T0,

0Q(T ) = 2.4

Nf

kBT0

h̄

√
T

T0
. (23)

The NCA calculation of [12] has been performed without taking account of the CEF
splittings. The extension to the CEF case will be given in [2]. In this respect, it should
be emphasized that the Kondo temperature is renormalized by the presence of the CEF
splittings. The above-mentionedT0 can be said to be a ‘high-temperature Kondo scale’,
i.e. describing properties at a temperature much higher than the CEF splittings:kBT � Em.
In order to describe the low-temperature Kondo properties, the energy scalekBTK is relevant,
related tokBT0 by the following expression, obtained through the variational solution of the
Kondo problem atT = 0 K [19, 20]:∏

m

(
Em

kB

+ TK

)
= (T0)

Nf . (24)

4.2. Preliminary analysis of CeNiSn and CePt2Si2 µSR data

The Kondo insulator CeNiSn has attracted much interest because it is believed that its energy
gap is produced by the hybridization of the 4f electrons with the conduction electrons.
No inelastic CEF structures have been observed in the neutron scattering spectra of this
compound at high temperature; at low temperature, the remarkable result has been found
that while the inelastic magnetic excitation is strongly dependent on the momentum transfer
Q, the zero-frequency response function is independent ofQ [21]. Recently someµSR
transverse-field relaxation data have been reported by Kalviuset al [22]. Although our
theoretical analysis has only considered data recorded in zero field, we do not expect the
temperature dependence of the zero-field and transverse-field relaxation rates to be much
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different. TheµSR data confirm that CeNiSn does not order magnetically, at least down to
11 mK. Interestingly, Kalviuset al observe that theµSR relaxation rateλZ is proportional
to 1/

√
T for 0.1 K . T . 2 K. At lower temperature it becomes temperature independent.

The spectra have been recorded in a strong transverse field (0.1 T) and therefore could be
influenced by inhomogeneities due to demagnetization-field effects. However, the measured√

T -behaviour of 1/λZ seems to indicate that the Ce ions at low temperature behave as
independent Kondo ions, consistently with the neutron results [21]. Following Coxet al
[12], the temperature at whichλZ becomes temperature independent is identified as the
Kondo temperature. ThereforeTK ' 0.1 K for CeNiSn. One potential problem with our
interpretation is that it supposes that the CEF effects are negligible. Up to now it does
not seem that there is detailed information available on the CEF energy levels in CeNiSn.
We note that recently it has been proposed that the most characteristic feature of a system
like CeNiSn is the presence of low-lying CEF energy levels [23, 24]. If the CEF energy
level splitting is as small as∼0.1 K, then the work presented in this report fully justifies
the observed

√
T -behaviour of 1/λZ. Interestingly, whereas at very small energy transfer

the Ce ions behave as isolated ions as indicated by the neutron analysis and our analysis of
the µSR results, the inelastic neutron measurements show that the inelastic excitations are
strongly influenced by the inter-site correlations [21].

The heavy-fermion compound CePt2Sn2 has recently attracted considerable attention
because of its enormous linear specific heat coefficient (γ > 3 J mol−1 K−2), consistent
with its low Kondo temperature (TK ∼ 1 K). A µSR study by Lukeet al [25] has shown
that the dynamics evolves over a wide temperature range. From 200 K down to 20 mK,
the depolarization function is found to be a generalized exponential,PZ(t) = exp[−(λZt)β ],
with the exponentβ = 1 above 0.7 K, while at low temperatureβ increases towards a value
of 2. The results below 0.7 K have recently been disputed by Lidström [26]. This author
argues that in fact the low-temperature spectra are best fitted with a damped oscillating signal
characterized by a low frequency. This means that the compound orders magnetically atTN

∼ 0.7 K. Therefore we shall not discuss any longer theλZ(T ) results of [25] forT < TN .
In the paramagnetic stateλZ(T ) decreases very slowly as temperature increases up toT∗ ∼
20 K and then presents a sharp decrease (an order of magnitude) up to the highest measured
temperature (200 K). Lukeet al [25] identify T∗ with the Kondo temperature. They note
that it is considerably larger than the value determined from the neutron scattering data [27].
This is not surprising because the temperature at whichλZ(T ) starts to change rapidly with
temperature can be taken as the Kondo temperature only in the absence of CEF effects.
In CePt2Sn2, the first excited CEF doublet seems to be located at 29 K [28]. Therefore
we expect a strong CEF effect on the behaviour ofλZ(T ) in this compound. Because of
the strong temperature dependence ofλZ for T > T∗, we infer that the lifetime of the
inelastic excitations is remarkably short. But before giving a definite interpretation of the
publishedµSR data, moreµSR (measurements ofλZ(T ) for different crystal orientations)
and neutron data are needed. In particular, researchers should attempt to observe via inelastic
neutron scattering the CEF transitions. Anyway, our analysis clearly shows that the Kondo
temperature cannot be deduced from an inflection point in the temperature dependence of
λZ, as had been done in [25].

5. Summary

We have analysed the meaning of the depolarization rateλZ measured inµSR experiments
performed in zero or weak longitudinal fields, in the paramagnetic phase of compounds
containing 4f-shell ions. The two main hypotheses of our calculation are the validity of the
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‘extreme narrowing’ regime for the fluctuation frequency of the rare-earth ion with respect
to its coupling to the muon spin, and the absence of inter-site correlations between rare-
earth ions. This approach holds at high temperature, well above the magnetic transition
temperature, and for fluctuation frequencies of the order of magnitude of 10 GHz or more.
We treated the case where the CEF splittings of the rare-earth ion are sizeable (typically, in
intermetallic compounds, they amount to a few 100 K). We have shown that the equivalent
dynamical width0µSR extracted from theλZ-value cannot be directly compared with the
dynamical quasi-elastic width0Q measured by neutron scattering. The expression that we
derived for0µSR shows that it contains contributions from both the quasi-elastic and inelastic
excitations; even at low temperature the ratio0µSR/0Q is different from unity. For the case
where the 4f fluctuations are driven by normal exchange with conduction electrons (i.e. no
Kondo effect), we have shown that the thermal variation of0µSR shows a marked

√
T -like

curvature in the temperature range1mn/kB , where1mn is a typical CEF splitting.
It should be noted that theµSR technique measures the fluctuations at zero energy

transfer. For the analysis of the data, one does not need to suppose that the spectral functions
are Lorentzian. This has been done in section 3.2 only for the purpose of comparing the
µSR and neutron linewidths.

We have also given a short discussion concerning the measured thermal variation of
the depolarization rate in two strongly correlated electronic systems, CeNiSn and CePt2Sn2,
where the Kondo effect plays a major role.

We stress thatµSR spin dynamics studies should be performed, at least as a first step,
in zero field or weak longitudinal fields: it is easier to interpret longitudinal-field than
transverse-field relaxation data, simply because the expression for the transverse relaxation
rate in terms of the correlation functions is complicated [29]. Up to now there has been
no detailed framework available for analysing transverse-field data. In addition the spectra
recorded in transverse fields can be influenced by demagnetization effects.

In our analysis we do not address the question of possible perturbation of the crystal
field by the electric muon charge, an effect which may have been seen recently [30]. The
coupling between the muon spin and the 4f ion being short range, our framework is still
valid provided that theµSR dynamical width is expressed in terms of the CEF level scheme
which is modified by the muon charge.

Appendix A. Expressions for theL(θ, ϕ) matrix elements

The matrix elements which allow us to express theµSR relaxation rate in terms of the
lattice-field correlation tensor are given in this appendix.L(θ, ϕ) is a symmetric matrix.
We have

Lxx = cos2 ϕ cos2 θ + sin2 ϕ (A1)

Lyy = sin2 ϕ cos2 θ + cos2 ϕ (A2)

Lzz = sin2 θ (A3)

Lxy = − cosϕ sinϕ sin2 θ (A4)

Lxz = − cosϕ cosθ sinθ (A5)

Lyz = − sinϕ cosθ sinθ. (A6)

For the analysis of data taken on a polycrystalline sample it is useful to have the spherical
average of the matrix elements. The average of each diagonal element is 2/3. The average
of each of the non-diagonal elements is zero.
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